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A different theoretical model of &enkov instability in the linear amplification regime of plasﬁEr@kov
masers is developed. The model assumes a cold relativistic annular electron beam propagating through a
column of cold dense plasma, the two bodies being immersed in an infinite magnetic guiding field inside a
perfect cylindrical waveguide. In order to simplify the calculations, a radial rectangular distribution of plasma
and beam density is assumed and only azimuthal symmetric modes are under investigation. The model's
difference consists of taking into account the whole plasma and beam electromagnetic structures in the inter-
pretation of the @renkov instability. This model leads to alternative results such as the possibility of emission
at several frequencies. In addition, the electric field is calculated taking into account its radial phase depen-
dence, so that a map of the field in the interaction region can be presgh1€63-651%96)03610-0

PACS numbegps): 52.25.Sw, 52.75.Ms, 52.35.Qz

I. INTRODUCTION radius. One of these devices emits radiation in the centimeter
range on the order of 0.1 GY®]. The experimental achieve-

Among the diversity of processes that can lead to an efment of the PCM is also the result of theoretical investiga-
ficient transfer of energy from an electron beam to an elections. Linear models of the interaction have been developed,
tromagnetic wave, the €2enkov instability is based on the among which we may note the studies of Alexandebal.
ability of a structure to propagate waves with a phase veloct10] and Pointon and De Grofi1]. In both cases, the model
ity less than the speed of light in the vacuum. In other wordsassumes the interaction to be the result of a monocoupling
the “Cerenkov structure,” more commonly called the “slow between the highest phase velocity mode of the slow wave
wave structure,” allows an electron beam to have a velocitystructure (connected to the presence of the plasma in the
greater than the phase velocity of a wave. The wave ampliwaveguidé and the so-called slow beam wave mdden-
fication arises from the interaction of the longitudinal veloc-nected to the presence of the beam in the waveguitie
ity of the electron beam with the longitudinal component ofwhole system being immersed in an infinite magnetic field.
the electric field of the wave. In the first case, the model assumes an infinitely thin beam

The first application of this phenomenon in microwavethickness so that the radial slow mode structure connected to
generation was the dielectrice@nkov maser consisting of a the beam annulus in the waveguide is reduced to a unique
metallic waveguide covered with a thin layer of dielectric mode. In the second case, where the beam density is assumed
[1]. Here the presence of the insulator characterized by & be sufficiently weak, this structure is reduced also to one
dielectric constant greater than 1 creates the slow wave strucaode. The lower phase velocity plasma modes of the slow
ture. Schematically, the plasma&f@nkov masefPCM) con-  wave structure are shown to be sufficiently far from the slow
sists of replacing the dielectric with a dense plasma. Undebeam mode not to interact with it.
these conditions, the dielectric constant becomes a tensor Our purpose in this paper is to investigate the interaction
that complicates the analysis. However, one can say that tHeetween the plasma mode structure and the mode structure
slow wave structure is permitted by the negative value of thénduced by the presence of a monoenergetic beam of finite
dielectric diagonal term in the longitudinal direction. This thickness and density in the waveguide. The system will also
phenomenon was explained by Bohm and Grf&sand be assumed to be strongly magnetized in order to simplify
Akhiezer and Fainber@3] when they investigated the gen- calculations. This approach allows the consideration of the
eral problem of beam-plasma instability. The effect of themulticoupling interaction due to the finite radial geometry of
magnetic field was taken into account by Stepanov and Kitthe system.
senko[4,5]. A significant list of references in this field can  The structure of the paper is as follows. In Sec. Il the
be found in the book of Kuzelev and Rukhad#g. theoretical model is developed. This consists of calculating

An efficient use of the €renkov instability for the micro- the dielectric tensor in different media, subject to a specific
wave generation in the PCM was demonstrated by Kuzeleget of assumptions that permit the use of the model. A dif-
et al. [7] In that experiment, the relativistic electron beamferential equation governing the longitudinal component of
was fully cylindrical and passed through a cylindrical plasmathe electric field is obtained and integrated. Boundary condi-
column. Since then, calculations have shown that an annuldions applied to the plasma, beam, and waveguide edge yield
electron beam would give a more efficient energy transfethe linear dispersion relation. The dependence of the growth
from the beam to the wave to be generdi8fl More PCM  rate versus plasma density is plotted and discussed.
prototypes were then built with a diode configuration, lead- In Sec. lll we focus our attention on the spatial field struc-
ing to an annular electron beam and with a special magnetidure. Phase surfaces of the field components are defined and
field configuration that permits tuning the plasma columnthe field amplitude is plotted on these surfaces. Finally, a
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FIG. 1. Experimental setup scheme of the p|a§mgeﬁkov ma- FIG. 2. Radial section of the system in the supposed infinitely
ser: (1), plasma and beam creation zofii), interaction zone; and long interaction regionr 4, inner beam radius;,, outer beam ra-
(1), emission zone. The hollow relativistic electron be6REB)  dius;rg, inner plasma radius,, outer plasma radius; arR] wave-

(1) is generated by the explosive catho@. The hollow plasma guide radius. The beafplasma density is constant between and
column(3) is created by a discharge obtained after the propagatiofiz (fs andr).

of a low-energy electron flux from the heated cath¢)ein xenon.

The (REB) and plasma are immersed in a strong longitudinal mag- A- Eigenmodes of a cylindrical waveguide filled with a plasma
netic field (5). An additional coil (6) permits tuning the plasma or a beam

radius. Both the REB and plasma are lost to the colle@pmwhich

L . 1. Derivation of the dispersion relation
is simultaneously a part of the outlet coaxial h¢&. P

A radial section of the system is presented in Fig. 3. The
field map is presented in the interaction region. In Sec. IV w initial-value problgm(withput the Wa\.@ consists of a cold
. ' ’ eplasma characterized by its Langmuir frequeagyor a cold
present a conclusion. monoenergetic beam propagating along thaxis with en-
ergy E and current. In both cases, the inner and outer radii
of the column will be denoted, andr, respectively, and the
Il. THEORETICAL MODEL waveguide radius aR. We assume the dependence of the
field components to be

The experimental setup of the PCM scheme is presented _
in Fig. 1. The model will consider only the interaction re- f(r.e,ztkw)=f(r)ek=o (1)
gion, which will be supposed to be infinite in the longitudinal . . . L :

z direction. This assumption can be justified because the anfr each poinM def"?ed by_ its cylindrical coordmat'esgo,z.
plified wave wavelength is shown to be much less than th n o_ther words, the field will be assumed to b_e axis symmet-
interaction region length, which is about 30 cm. However,”p n the s_yste_m alreac_jy sqppos_ed fo be |r_1f|n|te n th? lon-
this assumoti o egltudlnal directionz. Using linearized equations of motion,
ption prevents us from taking into account th
unavoidable feedback due to reflections at the interaction
region exit. We consider an annular relativistic electron
beam propagating inside an annular column of dense plasma,
the ions being sufficiently heavy to be considered at rest.
Both the beam and plasma are immersed in a strong longi-
tudinal magnetic field inside a perfectly conducting circular
waveguide. The density profile of the two bodies is supposed
to be axis symmetric and rectangular along the radius so that
the initial-value problem consists of providing eight param-
eters: inner and outer radii of the plasma and beam, wave-
guide radius, plasma density or plasma Langmuir frequency,
beam current, and energy. The radial section of the system is
displayed in Fig. 2.

The theoretical analysis is divided into two parts. First,
we consider the waveguide filled with the plasma or the
beam column in order to find the eigenmodes of the two
systems separately. In a second step, we will consider the FIG. 3. Radial section of the system filled with plasma or beam:
plasma and the beam simultaneously to find the nature of thg, inner beam(or plasma radius;r;, outer bear(or plasma ra-
instability that can appear from such a configuration. dius; andR, waveguide radius.
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continuity, and Faraday in Fourier-Laplace space, we find

A

the conductivity tensow connecting the current densify ®
and electric fieldE according to o=kc
j(k,w)=0(k,w)E(k,0) 2 - + +
and deduce the dielectric tensor defined by -+ 0=,
+ -
c=1 o 3
T iweg @ »
k

The details of the calculation and the full expression of

the dielectric tensor terms can be found[k2] in a more FIG. 4. Respective sign afK? in vacuum and the plasma in the

general case, in the sense that there it is assumed that tRéllouin diagram for the waveguide partially filled with the plasma.

field components depend on the azimuthal anglend the

plasma and beam densities on the radiugsing its expres-

sion and assuming the amplitude of the guiding magneti@ttention only on TM modes since the interaction requires a

field to be sufficiently strong, the expression for the infinitenonzero producE,v,. Due to the fact that the plasma and

cold plasma or beam dielectric tensor is given by beam densities have been assumed to be rectangular along
the radius, differential equations present() can be inte-
grated analytically. It should be emphasized that any other

1 0 O profile of plasma or beam density would make impossible an
s=[0 1 0 (4) analytic solution of the problem. The integration of the dif-
0 0 ¢ ferential equation leads to

where e=e,=1-wj/w” in the case of the plasma and
e=gp=1—wdly3(w—kvy)? in the case of the beam.

The condition of “infinite magnetic field” is not trivial
and we will return to this point at the end of the section. The
tensor of the infinite media can be applied in our case be-
cause the thickness of the plasma and the bé&out 1.0
mm in both casegsis much larger that the corresponding
Debye length. As if12], we include the dielectric tensor in
the Faraday and Ampe linearized equations. Usir{d), we
derive the following six equations governing the field struc-
ture in cylindrical coordinates:

fr— AJy(V—eK?r)+BYy(V—eK?r) if eK2<0,
(D=1 Aly(VoR2r) + BKo(JeKZr) if eK?>0

(6)

whereJ, and Y, are the Bessel functions of the first and the
second kind and, and K, the corresponding modified
Bessel functions. We see now that for each radigjsbrings

us to study the sign of the real quantig? in order to
determine the form of the solution. This study has been car-
ried out for the waveguide filled with plasma and the wave-
guide filled with the beam. The sign eK? in vacuum and

plasma(Fig. 4) and in vacuum and the bea(fig. 5), respec-

2 . aEZ 2( aBZ . - . . . .
E,=K™° —ik ) E,=K™ i ) tively, is shown. The straight lines separate the Brillouin
r r space in four different regions, according to the sigr Kf
JB iw JE y
— _k-2; z — k-2 __’=? b ©
Bi=-K (Ik ar ) Be=-K (c2 ar ) o=ke
©)
9°B 1B + + w=kvo+op/v?
22 ——Z+sKZBZ=0, --
ar r or _~0=kv
+- 7
- //// w=kvo- wp /72
PE, 10E, Lo Y s -~
-+ — —+&eK°E,=0, >
ar roor k
whereK?=k?— w?/c?.

The fact that the equations for tiig andB, components

are linearly independent enables us to define a basis of TM FIG. 5. Respective sign afK? in vacuum and the beam in the

modes(B,=0) and TE modegE,=0). We will focus our

Brillouin diagram for the waveguide partially filled with the beam.
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in vacuum and the plasma or the beam. They correspond tofinite and independent from each other, which explains the
zeros ofsK? and, being the asymptotes of the modes, theyhigh degree of freedom of the system. In order to reduce it to
describe their behavior for large wave numbers. one, we must apply the boundary conditions to the electro-
As an example, and to illustrate the kind of solution wemagnetic field at each frontier of the plasma or beam and at
obtain, we present the radial dependence ofEheompo-  the edge of the waveguide. It comprises the continuity of the
nent in the—+ region. In the three other regions, the field tangential component of the electric field and the continuity
takes a similar form of the normal component of the electric displacen@ats E

_ —2 : at each surface. However, at the waveguide frontier, only the

Ea(r)=Ado(v=K) Fo<r<a, first condition remains because the dielectric tensor of the

E,o(F)=Bly( VeK2r)+ CKy( eK2r) it a<r<b perfect metal is undefined. Using the properties of the Bessel
z2 - 0 0 ===y,

@) functions, we find four systems of five linear algebraic equa-
tions with five unknown quantities. By setting each determi-
ELa(1)=DJo(V=K2)+EYo(V=K?r)  if b<r=<R. nant of the four systems to zero, which rejects the trivial
solutionE,=0, we derive the dispersion relation connecting
Equations(7) depend on five different constams B, C, D, k.andw. The determinant corresponding to the- region is
and E. So far, we have considered the spatial regions agiven by

‘]O( —Kzl’i) _lo( eK I’i) _Ko( eK ri) 0 0
H(V=KZr) =eli(JeK?r) =\ =eKy(VeK?r) 0 0
0 lo(Vek?r)) Ko(VaK?r)) =Jo(V=KZ?r))  —=Yo(N—K?r)| =o. 8)

0 V=el1(VeK?r))  ——eKy(VeK?rj) —K?r)) Y1(V-K?r))
0 0 0 Jo(V=KZR)  Yo(V—K?R)

We return now to the assumption of infinite magnetic Langmuir frequency, 3010 rad s 1:beam energy, 511
field used in the model. The condition defining the validity of keV; and beam current, 3.2 kA. As expected, both systems
the assumption is not trivial since it requires conducting arare stable since for every mode able to exist, no point can be
analysis using the general dielectric tensor with finite magfound wheredk/dw=0 [14]. Because of this, for each real
netic field and comparing both results. An analysis carriedsalue of k correspond real values ab that permit us to
out in a finite magnetic field but in the framework of infi- develop the analysis in reék,») space only.
nitely thin plasma and beam thickndgs3] showed that the Though the diagram of the plasma system has been
assumption of infinitely magnetic field is valid as long as  known from a long time[15], developing the model was
necessary for the next step, which treats the coupling. The
wg(rj—ri)(rﬁrrj) plot (Fig. 6) shows typical modes of the empty waveguide

0> SRe : (9 above the dashed linw=Kkc) slightly shifted to a higher
frequency by the presence of the plasma. Nevertheless, their
whereQy is the cyclotron frequency. This inequality is con- nature remains the same since their phase ve_Iocity is _greater

straining0 for high plasma densitiés that require a highthan ¢. Another type of modes ur)der the line=kc is -
magnetic-field amplitude present. The_se modes have the desirable property of hav_mg a

' phase velocity smaller thao. Let us note also that their

number is infinite, their density growing as the rakio/w

increases. These modes have been named “nonresonant” or

A search for the zeros of the expressiDitk,w)=0 is  surface waves because their corresponding field is strongly
conducted numerically. For ea¢hand by linear interpola- confined in the vicinity of the plasma. Finally, it is worth
tion, we find the frequencies that satisfy the dispersion noting the even character efand K? with respect tck and
relation. This method, though time consuming, has the merito. Due to the form of the dispersion relatid8), this even
of being simple and rigorous. The results are presented inharacter is directly transmitted to the implicit function
Fig. 6 for the plasma and in Fig. 7 for the beam. The calcuD (k,w)=0. Namely, if (k,w) is a solution of the dispersion
lation has been performed using the following parametersielation, the three coupldg,— w), (—k,w), and(—k,—w) are
which are characteristic of our experimental setup: inner raalso solutions.
dius of the beam, 0.50 cm; outer radius of the beam, 0.60 Now, let us examine the result for the bedlfig. 7). This
cm; inner radius of the plasma, 0.85 cm; outer radius of thaliagram is the Lorentz transformation of a diagram charac-
plasma, 0.95 cm; radius of the waveguide, 1.80 cm; plasmterizing a plasma instead of the beam with the same density

2. Results
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—

FIG. 6. Dispersion relation for the waveguide
filled with plasma. The parameters of the calcu-
lation arer;=0.85 cm,r;=0.95 cm,R=1.80 cm,

04 1 //
0.2 - // / S

-

00 ""éﬁ!——!— - }
0.0 0.2 04 0.6 0.8 1.0 1.2
ke / o

0/ 0
l
N\

andw,=3.0x10" rad s *. The dashed lines rep-
resento=w, and w=Kkc.

(since the Langmuir frequency is an invariant to the Lorentzof the beam density and to the relativistic factgrwhich
transformation and the same geometrical parameters. Its tobrings together the two asymptotic lines between which the
pology has obvious similarity to the previous one. We agairmodes are localized.

encounter the empty waveguide modes; the frequency shift
due to the presence of the beam is, however, weaker in this
case. The modes that were localized at the vicinity of the line
w=0 betweenw, and —w, are now confined between the
lines w=kvo+ wp/y*? and w=kvo— w,/y*% Note that in We consider now the presence of plasma and the beam
the shown regioitwhich is the interesting one, as we will see simultaneously in the waveguide, which means the coupling
laten), the first slow beam modgvith lowest phase velocily  of the two previously studied structuréSig. 2). The process

is sufficiently far from the linew=Kkuvy and from the asymp- of the analysis is identical to the study of the eigenmodes.
totic limit w=kv,— w,/y*? to be distinguished from these The difference is that instead of two kinds of media
two values; thus an identification of this mode with these(vacuum-plasma or vacuum-begrwe are dealing now with
lines is not desirable. On the other hand, this mode is nothree kindgvacuum-plasma-begmwe will not consider the
alone and we are dealing with an infinite number of themcase where the beam and the plasma overlap in the same
This structure is due to the pseudoperiodicity of the Besseladial region. Consequently, the Brillouin diagram can be
functions and expresses the finite thickness and norsubdivided into eight distinguished regions corresponding to
negligible density of the beam. On the scale of the graph, the given sign ofeK? in different media. Three kinds of dia-
two first modes can be distinguished despite the fact that, igrams exist depending on the value of the rasigw, and
comparison to the plasma diagram, their density is muchhe relativistic factory. These zones are indicated in Fig. 8
higher. This highest mode density is due to the lower valudor the case wherawy/w,< y¥41-v,Ic). As previously

B. Coupling of the structures

1. Derivation of the dispersion relation

1.2 .

FIG. 7. Dispersion relation for the waveguide
filled with the beam. The parameters of the cal-
culation arer;=0.50 cm,r;=0.60 cm,R=1.80
cm, E=511 keV, andl =3.2 kA. Dashed lines
representw=Kku o+ wy/y*? and w=kc.
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E,o(r)=BJo(\—epK?r) + CYo(V—gpK?r)

o= kvo + @p /7' if risrs<r,,

o=kvg .

o= kv - 0 /1372 E,3(r)=DIo(VK2r)+EKo(VK?r) if ro<r<rj,
0=0p EZ4(r)=FJO(\/—spKzr)JrGYo(\/—spKzr)

if r3<r=<r,,

v E,s(r)=HIo(VK2r) +IEKo(VK?r) if r,<r<R,

FIG. 8. Respective sign afK? in vacuum, the plasma, and the wherer,,r, are the inner and outer beam radij,r, the

beam in the Brillouin diagram for the waveguide filled with both iNner and outer plasma radii, and the indexor p of e
plasma and the beam. indicates the beam or plasma medium. Instead of five con-

stants, the form of the field makes nine constants appear,
done, we present the radial dependence otheomponent to I. The boundary conditions applied at each edge of the
in one of the eight Brillouin diagram regions. We have cho-plasma and beam and at the edge of the waveguide form an

sen the+—— region, which hence corresponds to a positivealgebraic linear system of nine equations with nine unknown
value ofe K2in the vacuum and a negaﬂve Va|uegj(2 in quantities. Setting each determinant of the eight systems to
the plasma and beam: zero yields the dispersion relation. It appears in the form of
eight 9x9 determinants. The determinant corresponding to
E,.(r)=Alg(VK?r) if O<r<r,, (100  the +—— region is
|
lo(xt1)  —Jo(pxry)  —Yoluxry) 0 0 0 0 0 0
l1(xre)  wda(pxry)  wYa(uxrs) 0 0 0 0 0 0
0 Jo(mxra) Yolpxra)  —lo(xra) —Kolxra) 0 0 0 0
0 mda(uxra)  uYa(pxra)  lixra)  —Ka(xra) 0 0 0 0
0 0 0 lo(xr3s) Ko(xrs)  —Jdo(vxrs) —Yo(vxrs) 0 0 =0,
0 0 0 l1(xrs)  —Ka(xras) vdi(vxrs) vYi(vxra) 0 0
0 0 0 0 0 Jo(vxT4) Yo(vxra)  —lo(xra) —Kolxra)
0 0 0 0 0 vii(vxrs)  vYi(wvxrs)  la(xra)  —Ku(xra)
0 0 0 0 0 0 0 (xR Ko(xR)
11

FIG. 9. Dispersion relation in real space for
the waveguide filled with the beam and plasma.
The parameters of the calculation arg=0.50
cm, r,=0.60 cm, E=511 keV, 1=3.2 KA,
r3=0.85 cmr,=0.95 cm,w,=3.0x10" rad s *,
and R=1.80 cm. The dashed lines represent the
lines w=w,, o=kvo* wp/y*?, and w=ke.
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takes place in the- —— region defined previously is allowed

by the negative sign of the longitudinal diagonal term of the
dielectric tensor in the plasma and the beam. The uncommon
wideband instability feature can be explained by considering
the topology of the uncoupled modes. These are indeed very

@1

tween the two uncoupled modes in the instability region
> leading to a splitting of the instability on two different fre-

1 guencies. However, we did not observe such a splitting. In-
stead of this, a multicoupling configuration takes place as
shown in Fig. 11, obtained for a highest plasma density. The

FIG. 10. Superimposition diagram of both coupléetavy ling ~ coupling topology is explained in Fig. 12, where three un-
and uncoupledthin lines modes in the case of a unique coupling. coupled modes have been superimposed with the dispersion
relation itself: the first plasma modwith the highest phase
velocity) and the two first slow beam modesith the lowest
where for readability we have defined the quantities phase velocity Four different regions of the Brillouin dia-
gram can be distinguished. Starting from low value& ahd
o, the coupling begins between the first plasma mode and the

A I - o
L QeSS ° i close to each other all along the instability wave numbers so
P 3 I that the instability takes place on a very large range. For a
- ! lower coupling, one could expect an island to appear be-
W l

k

.
»

x=VK2, p=\-ep, v= NEF» (120  second beam modé varying from 0 tok,). Then for each
realk betweerk, andk,, three real values ab correspond-
2. Results in real space ing to each considered mode are present so that in this range

~_the configuration is stable. Another instability due to the cou-
The result of the plasma and beam structure coupling ming of the same plasma mode with the first slow beam

real Brillouin space is presented in Fig. 9. The beam an¢yode can be seen froky, to Ks. Finally, for larger wave-

plasma parameters are those used in Sec. Il A 2. Let us focygmber values, the configuration is stable. The parameters
our attention on the lowest phase velocity mode of the beamyse( for Figs. 11 and 12 have lead to a coupling between the
mode structurecalled the first beam mogl@nd on the high-  first plasma mode and the two first slow beam modes. For a
est phase velocity mode of the plasma structealed the  |ower heam energy, we have obtained other coupling con-
first plasma mode These two modes differ little from the figyrations including other beam and plasma modes so that

uncoupled ones for large values lofand w. To fully under e instapility splitting takes place on more than two frequen-
stand the diagram, these two modes and their coupling havges, as shown in Fig. 13.

been superimposed in Fig. 10. Clearly these modes are
coupled for wave numbers between a value very near 0 and
k,, corresponding to the disappearance of the curves in the
real diagram, the frequency becoming complex in this re- The analysis conducted up to now in the real space in-
gion. The pointk=k; satisfiesdk/dw=0. The existence of forms us about the instability spectrum width without giving

the point w=w; defined bydw/dk=0 shows that we are its amplitude. In order to estimate the consequences for the
dealing with a convective instability. This instability that emission spectrum it is necessary to calculate the complex

3. Results in complex space: Growth rate of the instability

FIG. 11. Dispersion relation in real space for
the waveguide filled with the beam and plasma.
The parameters are identical to those used in Fig.
9, except for the plasma density, which has been
increased tav,=4.5x10'" rad s ™.

0/ o
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frequency that will satisfy the differential equatidb) in Depending on the amplitude of the plasma density, two
complex space. The distinction of the solutions based on thsituations appear. For low plasma denditprves (1)—(5)
sign of eK?, which is necessary in real space, here becomewith open markerk the instability spectrum is localized on a
obsolete and we may write the solution unigue frequency. When plasma density increases, the spec-
trum band extends from 0 to a higher frequency to reach
about 20 GHz for the last curve. The topmost value of the
amplitude also increases to reach the appreciable value of
f(r)=AJo(V—eK?r)+BYo(V—eK), (13 about 70 dB(corresponding to an increment of X&0°
rad s1) if we compare to other devices such as a dielectric
whereJ, andY, are Bessel functions of the first kind with a Cerenkov masef18] or corrugated waveguide fulfilled with
complex argument. Following the same analysis as in redplasma[19]. For higher plasma densitiggurves (6)—(9)
space, one comes to the dispersion relation, which has a for#ith closed markers the spectrum splitting due to the cou-
similar to expressiorf11) and the terms of the determinant Pling of the first plasma mode with several slow beam modes
are complex. Noting the frequenay=w, +iw;, the problem appears as we prewously mgntloned in the .real-space analy-
involves finding the three real rooksw, ,w; of the complex ~ Sis. When plasma density increases, the increment of the
expressionD (K, », ,w;)=0. The method that could be ap- Main coupling diminishes and the spectrum narrows and
plied in the two-dimensional real-space analysis consistinghifts to higher frequencies. The secondary couplings have
of systematically sweeping the Brillouin diagram manifestly SIowly growing amplitude and follow the frequency shifting
cannot be applied in a three-dimensional volume for calcu®f the main coupling.
lation time reasons. To search for the roots, we have applied
for fixed k the iterative Newton method to the Taylor-series 4. Comparison with previous calculations, simulations,
expansion inw of the dispersion function defined by and experimental measurements
D(k,»)=0[16,17. The order of the development has been As mentioned in the Introduction, previous linear models
chosen equal to 2. Noting the stdp=w,,;— w,, the series  have been developed in the case of a monocoupling between
defined by the fastest plasma mode and the slow beam W8yl ,2(.
Two cases can be distinguished depending on the physical
parameters of the problem: if only the first slow beam wave

ID(K, @) interacts with the fastest plasma wave, our instability spec-
D(k,wn41)=D(k,w,)+ il } (A,) trum coincides correctly with the spectrum calculated by pre-
Jo w=w, vious models; if higher-order beam modes are involved in

the process, the main coupling instability coincides also, but
our model is the only one to take into account the secondary
instabilities.

It is now of interest to study the possibility of emission of
these new modes. The simplest approach is to consider the
effect of the axial boundary conditions, which result in the
reflection of the wave in the longitudinal direction. As a
result, only frequencies with a sufficient growth rate can be
amplified. Indeed, for each real frequeney the amplifica-

(Ap)? (14)

n

2

1 [#°D(k,
L1 [&
Jw

w=w

is convergentn being the number of iterations already per-
formed. Assumind (k,w, 1) =0, one obtains froni14)

[&D(k,w)/(?w]w=wn

An=— [azD(k,w)/&wz]w:wn tion that is only a necessary condition for emission requires
[aZD(k!w)/awz]w:wn R1R2kiL>ll (17)
x| 1— 1-2D(k,wy) YOWSIEISL .
[ID(k,w) ﬁw]w:wn whereR;,R, are the reflection coefficients at each longitu-

(15) dinal boundary of the interaction regiok; is the spatial
growth rate of the frequencyw,, and L is the interaction
Jegion length. Assuming;=1 and R,=0.25y"* [21], in-
cluding experimental parameters inth7) (L=30 cm and
vy=2) and using(16), we obtain an amplification threshold of
the frequencies corresponding to a growth rate at a power of

Figure 14 presents the result of calculations for different:3 dB. Because this vallue IS very clgs_e to.the topmost value
plasma densities achievable in our experiment. The horizonQf the secon_dary couplln_g(sFlg. 1.3)’ It |_s_d|ff|cult to con-
tal scale is the frequency in gigahertz. The vertical scale iglude from this approach if these instabilities are amplified or
the growth rate in power expressed in decibels after a run Oanmped.

30 cm. The time growth rate has been transformed into spa- The problem of the maser ability t_o emit the instability
tial growth rate as usual using the formula spectrum can only be strictly treated in the framework of a

nonlinear analysis. In this field, we may note the self-
consistent particle model, cylindrical symmetry, TM modes,
ki= ) (16)  and plasmgCYLTMP) developed in order to treat the non-
Jwy linear stage of amplificatiofnl1]. Purely nonlinear results
( ) provided by this analysis such as power and efficiency can-

Then one may iterate again until the required precision i
obtained. The real-space analysis gives the initialization of
for the largest value dk. For the next lower wave numbers,
linear interpolation is used.
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In this experiment the spectrometer was sensitive only in
the 8-17.3 GHz band. For each of the five measured fre-
quencies, the height of each vertical line is proportional to
the power received with a bandwidth of 10%. Many charac-
teristics of the spectrum behavior are in good agreement with
our calculations: up taw,=1.8x10" rad s, the emission
frequency is under the sensitive frequency band of the spec-
trometer. In the calculations, the spectrum reaches this sen-
sitive zone for a Langmuir frequency between 1.5 and
2.0x10'" rads™. Then, up tow,=2.5x10" rads*, the
k) ¢ k3 spectrum widens out and the midband frequency increases

with the plasma density. This tendency is also observed in

FIG. 12. Superimposition diagram of both coupléetavy ling  the calculations. The splitting of the spectrum on both fre-
and uncoupledthin lines modes in the case of a double coupling. quencies appears fas,=2.5x 10" rad s, whereas in the

calculation it takes place in the vicinity ab,=3.5x10"

not be compared to linear outcomes. However, the growthad %, For higher plasma densities, a great part of the spec-
rate of several frequencies can be calculated before saturgym is out of range of the spectrometer band.

tion and has been shown to be in good agreement with pre-- £rom this comparison, we can conclude that our calcula-

vious calculations. Unfortunately, all the available reSUItstions are in reasonable agreement with the experimental

oEpectrum. The multicoupling of the plasma-beam modes ob-
order modes of the beam or plasma remain passive and bggryeql in the linear model seems to be the reason_fpr the
€émission spectrum on at least two frequencies for sufficiently

cause in this case our linear model coincides with the previ: . . ) .
ous one, it coincides also with the simulations. Otherl9N Plasma density. Because of the different inherent mean-

configurations with, for example, a higher plasma Langmuir'™9 of experir_nental and theoretical spectra mentioned above,
frequency would be required to excite the new modes. Sucli iS Not possible to be more categorical.

simulations could give information about the behavior of

these secondary couplings in the nonlinear stage of amplifi- ll. FIELD STRUCTURE

cation.

Measurements of the spectrum have been carried out with From the previous analysis, the dispersion relation of the
the beam and geometrical parameters close to those we ha9¥stem is known, that is to say, the complex frequenaies
used for the calculation. Figure 15, taken frp20], displays able to propagate and grow for each real wave nunkber
the experimental spectrum for different plasma LangmuiBecause of the wideband spectrum, the field structure de-
frequencies between 0.9 and 400! rad s . The compari- pends on the wave number so that an eigenfield structure
son of these experimental results with our linear calculationgorresponds to each generated frequency of the band spec-
has to be made carefully. At first, the measured spectrum igum. The global field structure is a superimposition of the
nonlinear, which means that nonlinear processes appears ag@nfiguration corresponding to each frequency. However that
as a result, it is possible that the power spectrum is not pronay be, we suppose that the structure of the field corre-
portional to the growth rate spectrum. Note also that ousponding to different frequencies are of the same nature so
model does not take into account several characteristics dhat the analysis is conducted with a unique frequency. We
the experiment such as the finite magnetic field and the finithave chosen the frequency with the topmost growth rate
length of the experimental setup. Finally, the experimentavalue to emphasize the effect of amplification on the field
parameters are defined with a finite accuracy. structure. All the following results have been conducted with

ky

C—————p

configurations leading to a unique couplif@11]. Higher-

0.8

FIG. 13. Dispersion relation in real space for
the waveguide filled with the beam and plasma.
The parameters are identical to those used in Fig.
9, except for the beam energy, which has been
decreased to 111 keV.




5608 M. BIRAU 54

8 ——————————————— 1] op (rads”T) op (rads™)
3 @ @ ]
- 3 3
" R 2 o 0010l 1 _ = oo {22s00ttl 1 111
60 @ 7 I
~ ® 3
E s F ® 3 1.0 1011 S PR e N I
£t '? m
- o ] tisioltt o _ _ |24t { ] ]}
- 30 - |
2 E 1.8 1011 | I__.. 2.51011|_ |
10 E ﬂ 3 |
P Z/8 ' TR N N SR A AN U | NS N 1.9 1011 I |--3.31011-|__|
] 10 28 30 40 50
f(GHz)
o , . 21101t | ] ||_. 371010 _ 1 - 2
FIG. 14. Growth rate of the instability expressed in power in
decibel scale after a run of 30 cm versus the frequency for different | l l
Langmuir frequencies. The parameters of the calculation are 22 101!l | I {4010l = V1= = =
r;=0.50 cm,r,=0.60 cm,E=511 keV,1=3.2 kA, r3=0.85 cm, DN . =5 - 2
r,=0.95 cm, R=1.80 cm, (1) w,=1.0x10"" rads?’, (2 - AR
wp=1.5x10"rad s %, (3) 0,=2.0x10" rad 5%, (4) w,=2.5x 10" f(GHz) f(GHz)

rads ', (5) w,=3.0x10" rad s, (6) w,=3.5x10" rad s, (7)
w,=4.0x10" rads?, (8) w,=4.5x10" rads?, and (9)

wp:5.0><1011 rad st FIG. 15. Experimental radiation spectra for different plasma

Langmuir frequencies taken fron20]. The parameters used in the
. 1 1 L experiment are the average radius of the hollow begm0.60 cm;

a Langmuir frequency of 3%10" rad s* for an emission the average radius of the plasma columgr=0.80 cm; the wave-
frequency of 16.3 GHz. _ _ guide radiusR=1.80 cm; the beam energif=650 keV; the beam
equationg5) lead to

@ (1) ®4(1)
Er=—ikK2<ﬁ—Ez), E. =0, z(N=—— zn=——, (21)
ar ¢
(18  which describe the wave surface of the component. These
» values are plotted along the radius in Fig. 16 on a scale of the
B,=0, Bcp:@ E,, B,=0. amplified wavelength. The picture shows strongly undulated

surfaces, particularly for the radial component. The phase
Th ic field i | imuthal and change occurs strongly inside the plasma and the beam. The
e magnetic field Is purely azimuthal and presents g, qica| meaning of these surfaces can be understood by

dephqsmggow with respect to the radial component of the considering the Poynting vector. Indeed, using expressions
electric field because of the complex character of the fre

. o . 18)—(21), its real components can be written
guencyw. This dephasing is constant all along the radius ané )-(2) P

is given b
g Y EXB S
— = 0 s
4 “
¢,= arctan %) (19 ° S,
r where 2ot |
This complex character also becomes apparent in the radiak — _ e E.(OIIE. (M |(cod 2(kz— w.t
field dependencé(r) defined in(1) so that it can be written 2okc? [EDIIE(N)](cod2(kz=wrt)

f(r)=|f(r)|e'*"” and the real components of the field ap-

pear under the form of a three-term product FKLZ(1) +2(1) ]+ 9o} + COSK 2 (1) =21 ]+ @0}),

(22
e2wit )
e[ f(r)|cogkz— w t+¢(r)]. (20) sz=2M—||(C2| |E2(r)|[cog2{k[z+ Z,(r)]— w1} + ¢,,)
0
These terms are, respectively, the temporal growth rate, the +cog¢,)]-

radial dependence of the amplitude, and the oscillatory term,

which depends on the radius. The radial dependence of eattence, for each value of the radius, the energy flux compo-
field component is hence described by its own two paramnents can be written as a superimposition of an oscillatory
eters: the amplitudéf (r)| and the phase(r). Noting that  term in (z,t) and a constant term. The oscillatory term has a
¢ (r) and ¢,(r) represent the radial dephasing of the radialzero average value in time and permits the definition of the
and longitudinal component of the electric field, we definetwo surfaces for which the phase of energy flux in the radial
the quantities and the longitudinal direction is constant. Th€r) surface
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corresponds to the same phase of power density transmissiaction is localized in the beam crown where the transfer of

in the longitudinal direction. The surface that we cgl(r),  kinetic energy to the radiation takes place. Nevertheless, be-

corresponding to the same phase of power density transmisause of the boundary conditions, an increasé& pin the

sion in the radial direction, is defined by beam region due to the transfer of energy leads to the growth
of both components in the whole radial space, as shown on

Z(r)+2z,(r) ¢, the graph.
x(r)=- 2 T2k’ (23 We now turn to the question of energy transport by means
of a Poynting vector. Figure 18 describes its components in
The amplitude of the field is plotted in Fig. 17. We mustthe radial and the longitudinal direction. The two curves
emphasize that these curves have been plotted along theave been plotted along the surfacgér) and x,(r) de-
wave surfaces defined previously because they are the oncribed previously. Because of the presence of the wave-
ones that are representative of the physical geometry of thguide, the radial component cannot be emitted and one can
problem. The figure shows two maxima for the longitudinalverify that its value is zero at this boundary. Most of it is
component and inversely a drop in the radial component irtoncentrated in the beam-plasma crown and describes the
these media. The phenomenon is more pronounced in thexchange of energy from the beam to the plasma. The lon-
plasma since its density is stronger than that of the beangitudinal component that describes the extractable power is
Also, one can verify that the boundary condition on the metablmost zero inside the beam, reaches a high level between
edge is strictly observed since the longitudinal componenbeam and plasma, has its maximum value at the outer edge
drops to zero for this radius. The basic process of the interef the plasma, and decreases to a value near zero at the metal

FIG. 17. Distribution of the longitudinal and
radial electric-field amplitudes along the radius.

field amplitude (arb. units)
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edge. Note that because of the collector presence located @n note that where its amplitude strongly drops, the field is

the end of the tube interaction regi@fig. 18, radiation can  longitudinally oriented.
be easily extracted only from the vacuum annulus between

the plgsma and metal. Radiatio_n from inside undergoes a IV. CONCLUSION
very high attenuation when crossing the plasma and possibly
the beam, so that it is mostly reflected. We have presented in this paper a linear model of the

The next graph shows the field lines of the system at thénteraction in the plasmaeZenkov maser. Several assump-
scale of a wavelength in the interaction regi®iig. 19. The tions have been made to carry out the analysis: the assump-
frequency of the wave is conserved from the interaction retion of infinite media in the longitudinal direction, the as-
gion to the coaxial emitting zone, so the corresponding emitsumption of infinite guiding magnetic field, the assumption
ted wavelength will be modified by a factor corresponding toof rectangular radial distribution of cold plasma and mo-
the wave phase velocity ratio between these two regions. Theoenergetic beam, and the restriction of the analysis to the
density of the field lines corresponds as usual to the fielaxialsymmetric TM modes.
amplitude. The picture shows a classical profile of the TMO1 In this framework, we have studied the exact electromag-
mode inside the beam, which plays the role of the metalnetic structure linked to the presence of a plasma or a beam
However, the field lines are not strictly perpendicular to it. Ininside a perfect metallic waveguide and developed a model
the two others regiontbeam-plasma and plasma-mgtéhe  to investigate the possible couplings. We have shown that
field lines have a particular configuration since some lineslue to the finite thickness and non-negligible current density
leaving the plasma return to it while others go up to theof the relativistic electron beam, the first slow modes can be
metal or the beam. We did not draw the field lines inside thalistinguished. Because of this, coupling among several of
beam and the plasma because of their weak amplitude. Oriteem can appear with the first plasma mode. This analysis

=\ /\

plasmal

x\\\«(\\\%\\\m\
J v

-0.4 -0.2 0 0.2 04
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FIG. 19. Electric-field lines of the amplified
wave on the scale of a wavelength corresponding
to a frequency of 16.3 GHz. Other calculational
parameters are the same as those of Fig. 9.

r(mm)
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gives the opportunity to understand the dependence of thiégated. A map of the field in the interaction region has been
spatial growth rate versus frequency and plasma density, eplotted. This document is of interest to foresee the behavior
pecially the sharp cutoff of the low-frequency spectrum,of the wave at the exit of the interaction region.

which takes place at a certain value of plasma density. Fur-

thermore, this raises the possmlhty for the_ maser to W_ork on ACKNOWLEDGMENTS

several frequencies and, if so, may explain the experimental

spectrum observed in other experiments. Finally, this opens The author would like to thank Jean-Max Buzzi, Yannick
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