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A different theoretical model of Cˇ erenkov instability in the linear amplification regime of plasma Cˇ erenkov
masers is developed. The model assumes a cold relativistic annular electron beam propagating through a
column of cold dense plasma, the two bodies being immersed in an infinite magnetic guiding field inside a
perfect cylindrical waveguide. In order to simplify the calculations, a radial rectangular distribution of plasma
and beam density is assumed and only azimuthal symmetric modes are under investigation. The model’s
difference consists of taking into account the whole plasma and beam electromagnetic structures in the inter-
pretation of the Cˇ erenkov instability. This model leads to alternative results such as the possibility of emission
at several frequencies. In addition, the electric field is calculated taking into account its radial phase depen-
dence, so that a map of the field in the interaction region can be presented.@S1063-651X~96!03610-0#

PACS number~s!: 52.25.Sw, 52.75.Ms, 52.35.Qz

I. INTRODUCTION

Among the diversity of processes that can lead to an ef-
ficient transfer of energy from an electron beam to an elec-
tromagnetic wave, the Cˇ erenkov instability is based on the
ability of a structure to propagate waves with a phase veloc-
ity less than the speed of light in the vacuum. In other words,
the ‘‘Čerenkov structure,’’ more commonly called the ‘‘slow
wave structure,’’ allows an electron beam to have a velocity
greater than the phase velocity of a wave. The wave ampli-
fication arises from the interaction of the longitudinal veloc-
ity of the electron beam with the longitudinal component of
the electric field of the wave.

The first application of this phenomenon in microwave
generation was the dielectric Cˇ erenkov maser consisting of a
metallic waveguide covered with a thin layer of dielectric
@1#. Here the presence of the insulator characterized by a
dielectric constant greater than 1 creates the slow wave struc-
ture. Schematically, the plasma Cˇ erenkov maser~PCM! con-
sists of replacing the dielectric with a dense plasma. Under
these conditions, the dielectric constant becomes a tensor
that complicates the analysis. However, one can say that the
slow wave structure is permitted by the negative value of the
dielectric diagonal term in the longitudinal direction. This
phenomenon was explained by Bohm and Gross@2# and
Akhiezer and Fainberg@3# when they investigated the gen-
eral problem of beam-plasma instability. The effect of the
magnetic field was taken into account by Stepanov and Kit-
senko@4,5#. A significant list of references in this field can
be found in the book of Kuzelev and Rukhadze@6#.

An efficient use of the Cˇ erenkov instability for the micro-
wave generation in the PCM was demonstrated by Kuzelev
et al. @7# In that experiment, the relativistic electron beam
was fully cylindrical and passed through a cylindrical plasma
column. Since then, calculations have shown that an annular
electron beam would give a more efficient energy transfer
from the beam to the wave to be generated@8#. More PCM
prototypes were then built with a diode configuration, lead-
ing to an annular electron beam and with a special magnetic-
field configuration that permits tuning the plasma column

radius. One of these devices emits radiation in the centimeter
range on the order of 0.1 GW@9#. The experimental achieve-
ment of the PCM is also the result of theoretical investiga-
tions. Linear models of the interaction have been developed,
among which we may note the studies of Alexandrovet al.
@10# and Pointon and De Groot@11#. In both cases, the model
assumes the interaction to be the result of a monocoupling
between the highest phase velocity mode of the slow wave
structure~connected to the presence of the plasma in the
waveguide! and the so-called slow beam wave mode~con-
nected to the presence of the beam in the waveguide!, the
whole system being immersed in an infinite magnetic field.
In the first case, the model assumes an infinitely thin beam
thickness so that the radial slow mode structure connected to
the beam annulus in the waveguide is reduced to a unique
mode. In the second case, where the beam density is assumed
to be sufficiently weak, this structure is reduced also to one
mode. The lower phase velocity plasma modes of the slow
wave structure are shown to be sufficiently far from the slow
beam mode not to interact with it.

Our purpose in this paper is to investigate the interaction
between the plasma mode structure and the mode structure
induced by the presence of a monoenergetic beam of finite
thickness and density in the waveguide. The system will also
be assumed to be strongly magnetized in order to simplify
calculations. This approach allows the consideration of the
multicoupling interaction due to the finite radial geometry of
the system.

The structure of the paper is as follows. In Sec. II the
theoretical model is developed. This consists of calculating
the dielectric tensor in different media, subject to a specific
set of assumptions that permit the use of the model. A dif-
ferential equation governing the longitudinal component of
the electric field is obtained and integrated. Boundary condi-
tions applied to the plasma, beam, and waveguide edge yield
the linear dispersion relation. The dependence of the growth
rate versus plasma density is plotted and discussed.

In Sec. III we focus our attention on the spatial field struc-
ture. Phase surfaces of the field components are defined and
the field amplitude is plotted on these surfaces. Finally, a
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field map is presented in the interaction region. In Sec. IV we
present a conclusion.

II. THEORETICAL MODEL

The experimental setup of the PCM scheme is presented
in Fig. 1. The model will consider only the interaction re-
gion, which will be supposed to be infinite in the longitudinal
z direction. This assumption can be justified because the am-
plified wave wavelength is shown to be much less than the
interaction region length, which is about 30 cm. However,
this assumption prevents us from taking into account the
unavoidable feedback due to reflections at the interaction
region exit. We consider an annular relativistic electron
beam propagating inside an annular column of dense plasma,
the ions being sufficiently heavy to be considered at rest.
Both the beam and plasma are immersed in a strong longi-
tudinal magnetic field inside a perfectly conducting circular
waveguide. The density profile of the two bodies is supposed
to be axis symmetric and rectangular along the radius so that
the initial-value problem consists of providing eight param-
eters: inner and outer radii of the plasma and beam, wave-
guide radius, plasma density or plasma Langmuir frequency,
beam current, and energy. The radial section of the system is
displayed in Fig. 2.

The theoretical analysis is divided into two parts. First,
we consider the waveguide filled with the plasma or the
beam column in order to find the eigenmodes of the two
systems separately. In a second step, we will consider the
plasma and the beam simultaneously to find the nature of the
instability that can appear from such a configuration.

A. Eigenmodes of a cylindrical waveguide filled with a plasma
or a beam

1. Derivation of the dispersion relation

A radial section of the system is presented in Fig. 3. The
initial-value problem~without the wave! consists of a cold
plasma characterized by its Langmuir frequencyvp or a cold
monoenergetic beam propagating along thez axis with en-
ergyE and currentI . In both cases, the inner and outer radii
of the column will be denotedr i andr j , respectively, and the
waveguide radius asR. We assume the dependence of the
field components to be

f ~r ,w,z,t,k,v!5 f ~r !ei ~kz2vt ! ~1!

for each pointM defined by its cylindrical coordinatesr ,w,z.
In other words, the field will be assumed to be axis symmet-
ric in the system already supposed to be infinite in the lon-
gitudinal directionz. Using linearized equations of motion,

FIG. 1. Experimental setup scheme of the plasma Cˇ erenkov ma-
ser: ~I!, plasma and beam creation zone;~II !, interaction zone; and
~III !, emission zone. The hollow relativistic electron beam~REB!
~1! is generated by the explosive cathode~2!. The hollow plasma
column~3! is created by a discharge obtained after the propagation
of a low-energy electron flux from the heated cathode~4! in xenon.
The ~REB! and plasma are immersed in a strong longitudinal mag-
netic field ~5!. An additional coil ~6! permits tuning the plasma
radius. Both the REB and plasma are lost to the collector~7!, which
is simultaneously a part of the outlet coaxial horn~8!.

FIG. 2. Radial section of the system in the supposed infinitely
long interaction region:r 1, inner beam radius;r 2, outer beam ra-
dius; r 3, inner plasma radius;r 4, outer plasma radius; andR, wave-
guide radius. The beam~plasma! density is constant betweenr 1 and
r 2 ~r 3 and r 4!.

FIG. 3. Radial section of the system filled with plasma or beam:
r i , inner beam~or plasma! radius;r j , outer beam~or plasma! ra-
dius; andR, waveguide radius.
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continuity, and Faraday in Fourier-Laplace space, we find
the conductivity tensors% connecting the current densityj
and electric fieldE according to

j ~k,v!5s% ~k,v!E~k,v! ~2!

and deduce the dielectric tensor defined by

«% 51%2
s%

iv«0
. ~3!

The details of the calculation and the full expression of
the dielectric tensor terms can be found in@12# in a more
general case, in the sense that there it is assumed that the
field components depend on the azimuthal anglew and the
plasma and beam densities on the radiusr . Using its expres-
sion and assuming the amplitude of the guiding magnetic
field to be sufficiently strong, the expression for the infinite
cold plasma or beam dielectric tensor is given by

«% 5S 10
0

0
1
0

0
0
«
D ~4!

where «5«p512v p
2/v2 in the case of the plasma and

«5«b512v b
2/g 0

3(v2kv0)
2 in the case of the beam.

The condition of ‘‘infinite magnetic field’’ is not trivial
and we will return to this point at the end of the section. The
tensor of the infinite media can be applied in our case be-
cause the thickness of the plasma and the beam~about 1.0
mm in both cases! is much larger that the corresponding
Debye length. As in@12#, we include the dielectric tensor in
the Faraday and Ampe`re linearized equations. Using~1!, we
derive the following six equations governing the field struc-
ture in cylindrical coordinates:

Er5K22S 2 ik
]Ez

]r D , Ew5K22S iv ]Bz

]r D ,

Br52K22S ik ]Bz

]r D , Bw52K22S ivc2 ]Ez

]r D ,
~5!

]2Bz

]r 2
1
1

r

]Bz

]r
1«K2Bz50,

]2Ez

]r 2
1
1

r

]Ez

]r
1«K2Ez50,

whereK25k22v2/c2.
The fact that the equations for theEz andBz components

are linearly independent enables us to define a basis of TM
modes~Bz50! and TE modes~Ez50!. We will focus our

attention only on TM modes since the interaction requires a
nonzero productEzvz . Due to the fact that the plasma and
beam densities have been assumed to be rectangular along
the radius, differential equations present in~5! can be inte-
grated analytically. It should be emphasized that any other
profile of plasma or beam density would make impossible an
analytic solution of the problem. The integration of the dif-
ferential equation leads to

f ~r !5HAJ0~A2«K2r !1BY0~A2«K2r ! if «K2,0,

AI0~A«K2r !1BK0~A«K2r ! if «K2.0
~6!

whereJ0 andY0 are the Bessel functions of the first and the
second kind andI 0 and K0 the corresponding modified
Bessel functions. We see now that for each radius,~6! brings
us to study the sign of the real quantity«K2 in order to
determine the form of the solution. This study has been car-
ried out for the waveguide filled with plasma and the wave-
guide filled with the beam. The sign of«K2 in vacuum and
plasma~Fig. 4! and in vacuum and the beam~Fig. 5!, respec-
tively, is shown. The straight lines separate the Brillouin
space in four different regions, according to the sign of«K2

FIG. 4. Respective sign of«K2 in vacuum and the plasma in the
Brillouin diagram for the waveguide partially filled with the plasma.

FIG. 5. Respective sign of«K2 in vacuum and the beam in the
Brillouin diagram for the waveguide partially filled with the beam.
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in vacuum and the plasma or the beam. They correspond to
zeros of«K2 and, being the asymptotes of the modes, they
describe their behavior for large wave numbers.

As an example, and to illustrate the kind of solution we
obtain, we present the radial dependence of theEz compo-
nent in the21 region. In the three other regions, the field
takes a similar form

Ez1~r !5AJ0~A2K2r ! if 0<r<a,

Ez2~r !5BI0~A«K2r !1CK0~A«K2r ! if a<r<b,
~7!

Ez3~r !5DJ0~A2K2r !1EY0~A2K2r ! if b<r<R.

Equations~7! depend on five different constantsA, B, C, D,
and E. So far, we have considered the spatial regions as

infinite and independent from each other, which explains the
high degree of freedom of the system. In order to reduce it to
one, we must apply the boundary conditions to the electro-
magnetic field at each frontier of the plasma or beam and at
the edge of the waveguide. It comprises the continuity of the
tangential component of the electric field and the continuity
of the normal component of the electric displacementD5«%E
at each surface. However, at the waveguide frontier, only the
first condition remains because the dielectric tensor of the
perfect metal is undefined. Using the properties of the Bessel
functions, we find four systems of five linear algebraic equa-
tions with five unknown quantities. By setting each determi-
nant of the four systems to zero, which rejects the trivial
solutionEz50, we derive the dispersion relation connecting
k andv. The determinant corresponding to the21 region is
given by

UJ0~A2K2r i !

J1~A2K2r i !
0
0
0

2I 0~A«K2r i !
A2«I 1~A«K2r i !

I 0~A«K2r j !
A2«I 1~A«K2r j !

0

2K0~A«K2r i !

2A2«K1~A«K2r i !

K0~A«K2r j !

2A2«K1~A«K2r j !
0

0
0

2J0~A2K2r j !

J1~A2K2r j !

J0~A2K2R!

0
0

2Y0~A2K2r j !

Y1~A2K2r j !

Y0~A2K2R!

U50. ~8!

We return now to the assumption of infinite magnetic
field used in the model. The condition defining the validity of
the assumption is not trivial since it requires conducting an
analysis using the general dielectric tensor with finite mag-
netic field and comparing both results. An analysis carried
out in a finite magnetic field but in the framework of infi-
nitely thin plasma and beam thickness@13# showed that the
assumption of infinitely magnetic field is valid as long as

V0@
vp
2~r j2r i !~r i1r j !

2Rc
, ~9!

whereV0 is the cyclotron frequency. This inequality is con-
straining for high plasma densities that require a high
magnetic-field amplitude.

2. Results

A search for the zeros of the expressionD(k,v)50 is
conducted numerically. For eachk and by linear interpola-
tion, we find the frequenciesv that satisfy the dispersion
relation. This method, though time consuming, has the merit
of being simple and rigorous. The results are presented in
Fig. 6 for the plasma and in Fig. 7 for the beam. The calcu-
lation has been performed using the following parameters,
which are characteristic of our experimental setup: inner ra-
dius of the beam, 0.50 cm; outer radius of the beam, 0.60
cm; inner radius of the plasma, 0.85 cm; outer radius of the
plasma, 0.95 cm; radius of the waveguide, 1.80 cm; plasma

Langmuir frequency, 3.031011 rad s21;beam energy, 511
keV; and beam current, 3.2 kA. As expected, both systems
are stable since for every mode able to exist, no point can be
found wheredk/dv50 @14#. Because of this, for each real
value of k correspond real values ofv that permit us to
develop the analysis in real~k,v! space only.

Though the diagram of the plasma system has been
known from a long time@15#, developing the model was
necessary for the next step, which treats the coupling. The
plot ~Fig. 6! shows typical modes of the empty waveguide
above the dashed line~v5kc! slightly shifted to a higher
frequency by the presence of the plasma. Nevertheless, their
nature remains the same since their phase velocity is greater
than c. Another type of modes under the linev5kc is
present. These modes have the desirable property of having a
phase velocity smaller thanc. Let us note also that their
number is infinite, their density growing as the ratiokc/v
increases. These modes have been named ‘‘nonresonant’’ or
surface waves because their corresponding field is strongly
confined in the vicinity of the plasma. Finally, it is worth
noting the even character of« andK2 with respect tok and
v. Due to the form of the dispersion relation~8!, this even
character is directly transmitted to the implicit function
D(k,v)50. Namely, if ~k,v! is a solution of the dispersion
relation, the three couples~k,2v!, ~2k,v!, and~2k,2v! are
also solutions.

Now, let us examine the result for the beam~Fig. 7!. This
diagram is the Lorentz transformation of a diagram charac-
terizing a plasma instead of the beam with the same density
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~since the Langmuir frequency is an invariant to the Lorentz
transformation! and the same geometrical parameters. Its to-
pology has obvious similarity to the previous one. We again
encounter the empty waveguide modes; the frequency shift
due to the presence of the beam is, however, weaker in this
case. The modes that were localized at the vicinity of the line
v50 betweenvp and2vp are now confined between the
lines v5kv01vb/g

3/2 and v5kv02vb/g
3/2. Note that in

the shown region~which is the interesting one, as we will see
later!, the first slow beam mode~with lowest phase velocity!
is sufficiently far from the linev5kv0 and from the asymp-
totic limit v5kv02vb/g

3/2 to be distinguished from these
two values; thus an identification of this mode with these
lines is not desirable. On the other hand, this mode is not
alone and we are dealing with an infinite number of them.
This structure is due to the pseudoperiodicity of the Bessel
functions and expresses the finite thickness and non-
negligible density of the beam. On the scale of the graph, the
two first modes can be distinguished despite the fact that, in
comparison to the plasma diagram, their density is much
higher. This highest mode density is due to the lower value

of the beam density and to the relativistic factorg, which
brings together the two asymptotic lines between which the
modes are localized.

B. Coupling of the structures

1. Derivation of the dispersion relation

We consider now the presence of plasma and the beam
simultaneously in the waveguide, which means the coupling
of the two previously studied structures~Fig. 2!. The process
of the analysis is identical to the study of the eigenmodes.
The difference is that instead of two kinds of media
~vacuum-plasma or vacuum-beam!, we are dealing now with
three kinds~vacuum-plasma-beam!. We will not consider the
case where the beam and the plasma overlap in the same
radial region. Consequently, the Brillouin diagram can be
subdivided into eight distinguished regions corresponding to
a given sign of«K2 in different media. Three kinds of dia-
grams exist depending on the value of the ratiovb/vp and
the relativistic factorg. These zones are indicated in Fig. 8
for the case wherevb/vp,g3/2(12vz/c). As previously

FIG. 6. Dispersion relation for the waveguide
filled with plasma. The parameters of the calcu-
lation arer i50.85 cm,r j50.95 cm,R51.80 cm,
andvp53.031011 rad s21. The dashed lines rep-
resentv5vp andv5kc.

FIG. 7. Dispersion relation for the waveguide
filled with the beam. The parameters of the cal-
culation arer i50.50 cm, r j50.60 cm,R51.80
cm, E5511 keV, andI53.2 kA. Dashed lines
representv5kv06vb/g

3/2 andv5kc.
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done, we present the radial dependence of theEz component
in one of the eight Brillouin diagram regions. We have cho-
sen the122 region, which hence corresponds to a positive
value of«K2 in the vacuum and a negative value of«K2 in
the plasma and beam:

Ez1~r !5AI0~AK2r ! if 0<r<r 1 , ~10!

Ez2~r !5BJ0~A2«bK
2r !1CY0~A2«bK

2r !

if r 1<r<r 2 ,

Ez3~r !5DI 0~AK2r !1EK0~AK2r ! if r 2<r<r 3 ,

Ez4~r !5FJ0~A2«pK
2r !1GY0~A2«pK

2r !

if r 3<r<r 4 ,

Ez5~r !5HI 0~AK2r !1IEK0~AK2r ! if r 4<r<R,

where r 1 ,r 2 are the inner and outer beam radii,r 3 ,r 4 the
inner and outer plasma radii, and the indexb or p of «
indicates the beam or plasma medium. Instead of five con-
stants, the form of the field makes nine constants appear,A
to I . The boundary conditions applied at each edge of the
plasma and beam and at the edge of the waveguide form an
algebraic linear system of nine equations with nine unknown
quantities. Setting each determinant of the eight systems to
zero yields the dispersion relation. It appears in the form of
eight 939 determinants. The determinant corresponding to
the122 region is

U I 0~xr 1!
I 1~xr 1!

0
0
0
0
0
0
0

2J0~mxr 1!
mJ1~mxr 1!
J0~mxr 2!

mJ1~mxr 2!
0
0
0
0
0

2Y0~mxr 1!
mY1~mxr 1!
Y0~mxr 2!

mY1~mxr 2!
0
0
0
0
0

0
0

2I 0~xr 2!
I 1~xr 2!
I 0~xr 3!
I 1~xr 3!

0
0
0

0
0

2K0~xr 2!
2K1~xr 2!
K0~xr 3!

2K1~xr 3!
0
0
0

0
0
0
0

2J0~nxr 3!
nJ1~nxr 3!
J0~nxr 4!

nJ1~nxr 4!
0

0
0
0
0

2Y0~nxr 3!
nY1~nxr 3!
Y0~nxr 4!

nY1~nxr 4!
0

0
0
0
0
0
0

2I 0~xr 4!
I 1~xr 4!
I 0~xR!

0
0
0
0
0
0

2K0~xr 4!
2K1~xr 4!
K0~xR!

U50,

~11!

FIG. 8. Respective sign of«K2 in vacuum, the plasma, and the
beam in the Brillouin diagram for the waveguide filled with both
plasma and the beam.

FIG. 9. Dispersion relation in real space for
the waveguide filled with the beam and plasma.
The parameters of the calculation arer 150.50
cm, r 250.60 cm, E5511 keV, I53.2 kA,
r 350.85 cm,r 450.95 cm,vp53.031011 rad s21,
andR51.80 cm. The dashed lines represent the
linesv5vp , v5kv06vb/g

3/2, andv5kc.
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where for readability we have defined the quantities

x5AK2, m5A2«b, n5A2«p. ~12!

2. Results in real space

The result of the plasma and beam structure coupling in
real Brillouin space is presented in Fig. 9. The beam and
plasma parameters are those used in Sec. II A 2. Let us focus
our attention on the lowest phase velocity mode of the beam
mode structure~called the first beam mode! and on the high-
est phase velocity mode of the plasma structure~called the
first plasma mode!. These two modes differ little from the
uncoupled ones for large values ofk andv. To fully under
stand the diagram, these two modes and their coupling have
been superimposed in Fig. 10. Clearly these modes are
coupled for wave numbers between a value very near 0 and
k1, corresponding to the disappearance of the curves in the
real diagram, the frequency becoming complex in this re-
gion. The pointk5k1 satisfiesdk/dv50. The existence of
the point v5v1 defined bydv/dk50 shows that we are
dealing with a convective instability. This instability that

takes place in the122 region defined previously is allowed
by the negative sign of the longitudinal diagonal term of the
dielectric tensor in the plasma and the beam. The uncommon
wideband instability feature can be explained by considering
the topology of the uncoupled modes. These are indeed very
close to each other all along the instability wave numbers so
that the instability takes place on a very large range. For a
lower coupling, one could expect an island to appear be-
tween the two uncoupled modes in the instability region
leading to a splitting of the instability on two different fre-
quencies. However, we did not observe such a splitting. In-
stead of this, a multicoupling configuration takes place as
shown in Fig. 11, obtained for a highest plasma density. The
coupling topology is explained in Fig. 12, where three un-
coupled modes have been superimposed with the dispersion
relation itself: the first plasma mode~with the highest phase
velocity! and the two first slow beam modes~with the lowest
phase velocity!. Four different regions of the Brillouin dia-
gram can be distinguished. Starting from low values ofk and
v, the coupling begins between the first plasma mode and the
second beam mode~k varying from 0 tok1!. Then for each
realk betweenk1 andk2, three real values ofv correspond-
ing to each considered mode are present so that in this range
the configuration is stable. Another instability due to the cou-
pling of the same plasma mode with the first slow beam
mode can be seen fromk2 to k3. Finally, for larger wave-
number values, the configuration is stable. The parameters
used for Figs. 11 and 12 have lead to a coupling between the
first plasma mode and the two first slow beam modes. For a
lower beam energy, we have obtained other coupling con-
figurations including other beam and plasma modes so that
the instability splitting takes place on more than two frequen-
cies, as shown in Fig. 13.

3. Results in complex space: Growth rate of the instability

The analysis conducted up to now in the real space in-
forms us about the instability spectrum width without giving
its amplitude. In order to estimate the consequences for the
emission spectrum it is necessary to calculate the complex

FIG. 10. Superimposition diagram of both coupled~heavy line!
and uncoupled~thin lines! modes in the case of a unique coupling.

FIG. 11. Dispersion relation in real space for
the waveguide filled with the beam and plasma.
The parameters are identical to those used in Fig.
9, except for the plasma density, which has been
increased tovp54.531011 rad s21.
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frequency that will satisfy the differential equation~5! in
complex space. The distinction of the solutions based on the
sign of «K2, which is necessary in real space, here becomes
obsolete and we may write the solution

f ~r !5AJ0~A2«K2r !1BY0~A2«K2r !, ~13!

whereJ0 andY0 are Bessel functions of the first kind with a
complex argument. Following the same analysis as in real
space, one comes to the dispersion relation, which has a form
similar to expression~11! and the terms of the determinant
are complex. Noting the frequencyv5v r1 iv i , the problem
involves finding the three real rootsk,v r ,v i of the complex
expressionD(k,v r ,v i)50. The method that could be ap-
plied in the two-dimensional real-space analysis consisting
of systematically sweeping the Brillouin diagram manifestly
cannot be applied in a three-dimensional volume for calcu-
lation time reasons. To search for the roots, we have applied
for fixed k the iterative Newton method to the Taylor-series
expansion in v of the dispersion function defined by
D(k,v)50 @16,17#. The order of the development has been
chosen equal to 2. Noting the stepDn5vn112vn , the series
defined by

D~k,vn11!5D~k,vn!1F]D~k,vn!

]v G
v5vn

~Dn!

1
1

2 F]2D~k,vn!

]v2 G
v5vn

~Dn!
2 ~14!

is convergent,n being the number of iterations already per-
formed. AssumingD(k,vn11)50, one obtains from~14!

Dn52
@]D~k,v!/]v#v5vn

@]2D~k,v!/]v2#v5vn

3F12A122D~k,vn!
@]2D~k,v!/]v2#v5vn

@]D~k,v!/]v#v5vn

2 G .
~15!

Then one may iterate again until the required precision is
obtained. The real-space analysis gives the initialization ofv
for the largest value ofk. For the next lower wave numbers,
linear interpolation is used.

Figure 14 presents the result of calculations for different
plasma densities achievable in our experiment. The horizon-
tal scale is the frequency in gigahertz. The vertical scale is
the growth rate in power expressed in decibels after a run of
30 cm. The time growth rate has been transformed into spa-
tial growth rate as usual using the formula

ki5
v i

S ]v r

]k D . ~16!

Depending on the amplitude of the plasma density, two
situations appear. For low plasma density@curves ~1!–~5!
with open markers#, the instability spectrum is localized on a
unique frequency. When plasma density increases, the spec-
trum band extends from 0 to a higher frequency to reach
about 20 GHz for the last curve. The topmost value of the
amplitude also increases to reach the appreciable value of
about 70 dB~corresponding to an increment of 5.63109

rad s21! if we compare to other devices such as a dielectric
Čerenkov maser@18# or corrugated waveguide fulfilled with
plasma @19#. For higher plasma densities@curves ~6!–~9!
with closed markers#, the spectrum splitting due to the cou-
pling of the first plasma mode with several slow beam modes
appears as we previously mentioned in the real-space analy-
sis. When plasma density increases, the increment of the
main coupling diminishes and the spectrum narrows and
shifts to higher frequencies. The secondary couplings have
slowly growing amplitude and follow the frequency shifting
of the main coupling.

4. Comparison with previous calculations, simulations,
and experimental measurements

As mentioned in the Introduction, previous linear models
have been developed in the case of a monocoupling between
the fastest plasma mode and the slow beam wave@8,11,20#.
Two cases can be distinguished depending on the physical
parameters of the problem: if only the first slow beam wave
interacts with the fastest plasma wave, our instability spec-
trum coincides correctly with the spectrum calculated by pre-
vious models; if higher-order beam modes are involved in
the process, the main coupling instability coincides also, but
our model is the only one to take into account the secondary
instabilities.

It is now of interest to study the possibility of emission of
these new modes. The simplest approach is to consider the
effect of the axial boundary conditions, which result in the
reflection of the wave in the longitudinal direction. As a
result, only frequencies with a sufficient growth rate can be
amplified. Indeed, for each real frequencyvr the amplifica-
tion that is only a necessary condition for emission requires

R1R2kiL.1, ~17!

whereR1 ,R2 are the reflection coefficients at each longitu-
dinal boundary of the interaction region,ki is the spatial
growth rate of the frequencyvr , and L is the interaction
region length. AssumingR151 andR250.25g22 @21#, in-
cluding experimental parameters into~17! ~L530 cm and
g52! and using~16!, we obtain an amplification threshold of
the frequencies corresponding to a growth rate at a power of
13 dB. Because this value is very close to the topmost value
of the secondary couplings~Fig. 13!, it is difficult to con-
clude from this approach if these instabilities are amplified or
damped.

The problem of the maser ability to emit the instability
spectrum can only be strictly treated in the framework of a
nonlinear analysis. In this field, we may note the self-
consistent particle model, cylindrical symmetry, TM modes,
and plasma~CYLTMP! developed in order to treat the non-
linear stage of amplification@11#. Purely nonlinear results
provided by this analysis such as power and efficiency can-

5606 54M. BIRAU



not be compared to linear outcomes. However, the growth
rate of several frequencies can be calculated before satura-
tion and has been shown to be in good agreement with pre-
vious calculations. Unfortunately, all the available results
performed by using this code have been obtained only for
configurations leading to a unique coupling@8,11#. Higher-
order modes of the beam or plasma remain passive and be-
cause in this case our linear model coincides with the previ-
ous one, it coincides also with the simulations. Other
configurations with, for example, a higher plasma Langmuir
frequency would be required to excite the new modes. Such
simulations could give information about the behavior of
these secondary couplings in the nonlinear stage of amplifi-
cation.

Measurements of the spectrum have been carried out with
the beam and geometrical parameters close to those we have
used for the calculation. Figure 15, taken from@20#, displays
the experimental spectrum for different plasma Langmuir
frequencies between 0.9 and 4.031011 rad s21. The compari-
son of these experimental results with our linear calculations
has to be made carefully. At first, the measured spectrum is
nonlinear, which means that nonlinear processes appears and
as a result, it is possible that the power spectrum is not pro-
portional to the growth rate spectrum. Note also that our
model does not take into account several characteristics of
the experiment such as the finite magnetic field and the finite
length of the experimental setup. Finally, the experimental
parameters are defined with a finite accuracy.

In this experiment the spectrometer was sensitive only in
the 8–17.3 GHz band. For each of the five measured fre-
quencies, the height of each vertical line is proportional to
the power received with a bandwidth of 10%. Many charac-
teristics of the spectrum behavior are in good agreement with
our calculations: up tovp51.831011 rad s21, the emission
frequency is under the sensitive frequency band of the spec-
trometer. In the calculations, the spectrum reaches this sen-
sitive zone for a Langmuir frequency between 1.5 and
2.031011 rad s21. Then, up tovp52.531011 rad s21, the
spectrum widens out and the midband frequency increases
with the plasma density. This tendency is also observed in
the calculations. The splitting of the spectrum on both fre-
quencies appears forvp52.531011 rad s21, whereas in the
calculation it takes place in the vicinity ofvp53.531011

rad s21. For higher plasma densities, a great part of the spec-
trum is out of range of the spectrometer band.

From this comparison, we can conclude that our calcula-
tions are in reasonable agreement with the experimental
spectrum. The multicoupling of the plasma-beam modes ob-
served in the linear model seems to be the reason for the
emission spectrum on at least two frequencies for sufficiently
high plasma density. Because of the different inherent mean-
ing of experimental and theoretical spectra mentioned above,
it is not possible to be more categorical.

III. FIELD STRUCTURE

From the previous analysis, the dispersion relation of the
system is known, that is to say, the complex frequenciesv
able to propagate and grow for each real wave numberk.
Because of the wideband spectrum, the field structure de-
pends on the wave number so that an eigenfield structure
corresponds to each generated frequency of the band spec-
trum. The global field structure is a superimposition of the
configuration corresponding to each frequency. However that
may be, we suppose that the structure of the field corre-
sponding to different frequencies are of the same nature so
that the analysis is conducted with a unique frequency. We
have chosen the frequency with the topmost growth rate
value to emphasize the effect of amplification on the field
structure. All the following results have been conducted with

FIG. 12. Superimposition diagram of both coupled~heavy line!
and uncoupled~thin lines! modes in the case of a double coupling.

FIG. 13. Dispersion relation in real space for
the waveguide filled with the beam and plasma.
The parameters are identical to those used in Fig.
9, except for the beam energy, which has been
decreased to 111 keV.
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a Langmuir frequency of 3.031011 rad s21 for an emission
frequency of 16.3 GHz.

The assumptions made in our model with the Maxwell
equations~5! lead to

Er52 ikK22S ]Ez

]r D , Ew50,

~18!

Br50, Bw5
v

kc2
Er , Bz50.

The magnetic field is purely azimuthal and presents a
dephasingwv with respect to the radial component of the
electric field because of the complex character of the fre-
quencyv. This dephasing is constant all along the radius and
is given by

wv5arctanS v i

v r
D . ~19!

This complex character also becomes apparent in the radial
field dependencef (r ) defined in~1! so that it can be written
f (r )5u f (r )ueiw(r ) and the real components of the field ap-
pear under the form of a three-term product

ev i tu f ~r !ucos@kz2v r t1w~r !#. ~20!

These terms are, respectively, the temporal growth rate, the
radial dependence of the amplitude, and the oscillatory term,
which depends on the radius. The radial dependence of each
field component is hence described by its own two param-
eters: the amplitudeu f (r )u and the phasew(r ). Noting that
wr(r ) andwz(r ) represent the radial dephasing of the radial
and longitudinal component of the electric field, we define
the quantities

zr~r !5
w r~r !

k
, zz~r !5

wz~r !

k
, ~21!

which describe the wave surface of the component. These
values are plotted along the radius in Fig. 16 on a scale of the
amplified wavelength. The picture shows strongly undulated
surfaces, particularly for the radial component. The phase
change occurs strongly inside the plasma and the beam. The
physical meaning of these surfaces can be understood by
considering the Poynting vector. Indeed, using expressions
~18!–~21!, its real components can be written

S5
E3B

m0
5S Sr0

Sz
D ,

where

Sr52
e2v i tuvu
2m0kc

2 uEz~r !uuEr~r !u„cos$2~kz2v r t !

1k@zr~r !1zz~r !#1wv%1cos$k@zr~r !2zz~r !#1wv%…,
~22!

Sz5
e2v i tuvu
2m0kc

2 uEr
2~r !u†cos„2$k@z1zr~r !#2v r t%1wv…

1cos~wv!‡.

Hence, for each value of the radius, the energy flux compo-
nents can be written as a superimposition of an oscillatory
term in (z,t) and a constant term. The oscillatory term has a
zero average value in time and permits the definition of the
two surfaces for which the phase of energy flux in the radial
and the longitudinal direction is constant. Thezr(r ) surface

FIG. 14. Growth rate of the instability expressed in power in
decibel scale after a run of 30 cm versus the frequency for different
Langmuir frequencies. The parameters of the calculation are
r 150.50 cm,r 250.60 cm,E5511 keV, I53.2 kA, r 350.85 cm,
r 450.95 cm, R51.80 cm, ~1! vp51.031011 rad s21, ~2!
vp51.531011 rad s21, ~3! vp52.031011 rad s21, ~4! vp52.531011

rad s21, ~5! vp53.031011 rad s21, ~6! vp53.531011 rad s21, ~7!
vp54.031011 rad s21, ~8! vp54.531011 rad s21, and ~9!
vp55.031011 rad s21.

FIG. 15. Experimental radiation spectra for different plasma
Langmuir frequencies taken from@20#. The parameters used in the
experiment are the average radius of the hollow beam,r b50.60 cm;
the average radius of the plasma column,r p50.80 cm; the wave-
guide radius,R51.80 cm; the beam energy,E5650 keV; the beam
current,I53 kA; and the guiding magnetic field,B52.0 T.

5608 54M. BIRAU



corresponds to the same phase of power density transmission
in the longitudinal direction. The surface that we callx r(r ),
corresponding to the same phase of power density transmis-
sion in the radial direction, is defined by

x~r !52
zr~r !1zz~r !

2
2

wv

2k
. ~23!

The amplitude of the field is plotted in Fig. 17. We must
emphasize that these curves have been plotted along the
wave surfaces defined previously because they are the only
ones that are representative of the physical geometry of the
problem. The figure shows two maxima for the longitudinal
component and inversely a drop in the radial component in
these media. The phenomenon is more pronounced in the
plasma since its density is stronger than that of the beam.
Also, one can verify that the boundary condition on the metal
edge is strictly observed since the longitudinal component
drops to zero for this radius. The basic process of the inter-

action is localized in the beam crown where the transfer of
kinetic energy to the radiation takes place. Nevertheless, be-
cause of the boundary conditions, an increase ofEz in the
beam region due to the transfer of energy leads to the growth
of both components in the whole radial space, as shown on
the graph.

We now turn to the question of energy transport by means
of a Poynting vector. Figure 18 describes its components in
the radial and the longitudinal direction. The two curves
have been plotted along the surfaceszr(r ) and x r(r ) de-
scribed previously. Because of the presence of the wave-
guide, the radial component cannot be emitted and one can
verify that its value is zero at this boundary. Most of it is
concentrated in the beam-plasma crown and describes the
exchange of energy from the beam to the plasma. The lon-
gitudinal component that describes the extractable power is
almost zero inside the beam, reaches a high level between
beam and plasma, has its maximum value at the outer edge
of the plasma, and decreases to a value near zero at the metal

FIG. 16. Wave surfaces of the longitudinal
and radial electric-field components versus the ra-
dius.

FIG. 17. Distribution of the longitudinal and
radial electric-field amplitudes along the radius.
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edge. Note that because of the collector presence located at
the end of the tube interaction region~Fig. 18!, radiation can
be easily extracted only from the vacuum annulus between
the plasma and metal. Radiation from inside undergoes a
very high attenuation when crossing the plasma and possibly
the beam, so that it is mostly reflected.

The next graph shows the field lines of the system at the
scale of a wavelength in the interaction region~Fig. 19!. The
frequency of the wave is conserved from the interaction re-
gion to the coaxial emitting zone, so the corresponding emit-
ted wavelength will be modified by a factor corresponding to
the wave phase velocity ratio between these two regions. The
density of the field lines corresponds as usual to the field
amplitude. The picture shows a classical profile of the TM01
mode inside the beam, which plays the role of the metal.
However, the field lines are not strictly perpendicular to it. In
the two others regions~beam-plasma and plasma-metal!, the
field lines have a particular configuration since some lines
leaving the plasma return to it while others go up to the
metal or the beam. We did not draw the field lines inside the
beam and the plasma because of their weak amplitude. One

can note that where its amplitude strongly drops, the field is
longitudinally oriented.

IV. CONCLUSION

We have presented in this paper a linear model of the
interaction in the plasma Cˇ erenkov maser. Several assump-
tions have been made to carry out the analysis: the assump-
tion of infinite media in the longitudinal direction, the as-
sumption of infinite guiding magnetic field, the assumption
of rectangular radial distribution of cold plasma and mo-
noenergetic beam, and the restriction of the analysis to the
axialsymmetric TM modes.

In this framework, we have studied the exact electromag-
netic structure linked to the presence of a plasma or a beam
inside a perfect metallic waveguide and developed a model
to investigate the possible couplings. We have shown that
due to the finite thickness and non-negligible current density
of the relativistic electron beam, the first slow modes can be
distinguished. Because of this, coupling among several of
them can appear with the first plasma mode. This analysis

FIG. 18. Radial distribution of the longitudi-
nal and radial Poynting vector components.

FIG. 19. Electric-field lines of the amplified
wave on the scale of a wavelength corresponding
to a frequency of 16.3 GHz. Other calculational
parameters are the same as those of Fig. 9.
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gives the opportunity to understand the dependence of the
spatial growth rate versus frequency and plasma density, es-
pecially the sharp cutoff of the low-frequency spectrum,
which takes place at a certain value of plasma density. Fur-
thermore, this raises the possibility for the maser to work on
several frequencies and, if so, may explain the experimental
spectrum observed in other experiments. Finally, this opens
the door to choose experimental parameters for a given re-
gime of the maser in the framework of the assumptions de-
scribed above. Also, the structure of the field has been inves-

tigated. A map of the field in the interaction region has been
plotted. This document is of interest to foresee the behavior
of the wave at the exit of the interaction region.
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